If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-126x-81=0
a = 49; b = -126; c = -81;
Δ = b2-4ac
Δ = -1262-4·49·(-81)
Δ = 31752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{31752}=\sqrt{15876*2}=\sqrt{15876}*\sqrt{2}=126\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-126)-126\sqrt{2}}{2*49}=\frac{126-126\sqrt{2}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-126)+126\sqrt{2}}{2*49}=\frac{126+126\sqrt{2}}{98} $
| 491-x)=3x=-2(x+1) | | 11-5m=14 | | 3x+3=7x+30 | | (12-x/2)=4x | | 4x+11=14+x | | x/3+14=35 | | 8g+22=26 | | 4y+y-20=5y | | 5/3y=4 | | 229=2x+17+5.5+2x+17+5.5x | | 10x/40=1.5 | | 2x+28=-10x+4 | | -8(9+a)=-48-5a | | (3/4)x-7=5 | | 10+3m+3-3m=3m-3-m | | 8x+10-3x=2(x-4) | | 6=x/0.75 | | 6x+10-2x=6 | | 32-7x=-2x-5(-5-2x) | | x-(12-2x)=39 | | 2x+28=-10+4 | | 5x-6+2-10x=16 | | -9-(18x-5)=2(7x-16)-3x | | 4+9u=11u | | 1.5(x+4-3=4.5(x-2) | | 14v-6v=72 | | 36-8x=-2(x-6) | | 7x-3+x+21=180 | | 10/1x=5 | | -3+x/3=-4 | | -10x+1=19 | | 7x+200=17,7006 |